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1. INTRODUCTION

The Fracture Mechanics Team (FMT) at the BRL became involved in a joint Hercules-Olin

M14 Replacement Program whose objectives were to find a propellant replacement for the M865

round. The proposed replacement propellant, M26A1E1 (Hercules experimental formulation, HES-

9520.25), is a modification of the M14 propellant. Some advantages of the M26AIE1 propellant

include, 1) low production cost, 2) low propellant hygroscopicity, 3) elimination of the carcinogen,

dinitrotoluene, (DNT) from the M 14 formulation, 4) successful use with the 152-mm Sheridan tank

round, and 5) the production process is easily transferred to other propellant facilities.

This report outlines the results of uniaxial compression testing of M26A1E1 propellant as a

function of temperature, -40, -20, 20, and 50 degrees Celsius and constant strain rate, 100 sec-1. Of

particular interest is whether fractures develop in the propellant as a result of uniaxial deformation,

since the presence of fracture damage has been linked to both the vulnerability response (Lu et al.

1991) ard enhanced apparent burning rate (Gazonas, ýJuhasz and Ford 1991) in propellants.

A comparison of the mechanical response parameters (e.g. yield stress and strain, compres-

sive and failure moduli, absorbed energy density) of M14 and M26A1E1 as a function of tempera-

ture are also provided. Photographs of the deformed propellant are included as an aid in the descrip-

tion of the macroscopic deformation mechanisms and scanning electron microgiapihs (SEM) provioe

a morphological description of the undelormed propellant.

2. EYPERIMENTAL PROCEDURE

2.1 Specimen Preparation, The seven-perforation granular propellant (25 grams) was

shipped from the Hercules, Inc., Kenvil, New Jersey facility in an explosion-proof cylinder. The

1I
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granular propellant starting material kM26A1E1 lot # HFS-9520.25) was cut into right.circular

cylinders using an Isomet aocuble-bladed saw. A double-bladed saw was used to siraultaneously cut

both specimen ends prallel to each other and to help maintain coaxial deformation with the cylinder

axis. Specimen aspect ratio, length-to-diameter (l/d), is about 2/1. The ir.ert lubricant, molybde-

num disulfide, MoS2 , was applied sparingly to the specimen ends to reduce end friction effects and

test variability (Gazonas and Ford 1992). The M14 specimens (lot # RAD-PD-066-1) were prepared

and tested in the same fashion in an earlier study (Lu et al. 1991). Propellant chemical compositiens

appear in Table 1.

Table 1. Chemical Compositions of M14 and M26AlE1 Propellants

Composition (%) M140 M26AIEIb

NC (13.15 ,N)- Nitrocellulose 89.0 65.55

DNT-Dinitrotoltene 8.0

NG-Nitroglycerin 23.51

DBP-D;butyl Pthalate 2.0 9.75

DPA-Diphenylacetate 1.0

EC-Ethyl Centralite 0.98

Carbon Black 0.21

'Lu et al. 1992

bFurrier 1992

2.2 Test Apparatus. Data Acquisition and Data Reduction. The High Rate 810 MTS m-,te-

rial test system (Figure 1) consists of a conventional two-pole press with a servohydraulically actu-

ated ram that operates from quasi-static velocities to a maximum velocity of about 12 meters/sec; the

maximum velocity imparts a strain rate of 1200 see" on a 10 millimeter long specimen. A Ther-

motron temperature controller, Model 5200, permits thermal conditioning if specimens Lfom -85 to

2
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Figure 1. Servohydraulic Test Apparatus.

90 degrees Celsius in an air-circulating oven/refrigerator that houses both upper and lower pistons

during testing. Specimens are uniformly heated/cooled and thermally conditioned at the test tem-

peratures -40, -20, 20 and 50 degrees Celsius for at least 30 minutes before each test. Uniaxial

compression tests are performed at a constant strain rate of 100 sec' by computer control of the

piston velocity via feedback from an externally-mounted, linear-variable-differential-transformer

(LVDT), MTS Model 244.11. Force is measured with a 60 kN, quartz-piezoelectric, force trans-

ducer, Kistler Type 9031 A, that is mounted on the upper moving piston. Apparatus stiffness is

measured at 91.87 ± 4.8 kN/mm (Gazonas 1991).

The raw force and displacement data are acquired, stored, and analyzed using an IQ-300

multichannel processing digital oscilloscope. The raw force and displacement data are reduced to

engineering stress, a, versus strain, e, by normalizing measured quantities to initial specimen area

and specimen length respectively. Force data are corrected for temperature changes since the force

transducer and piston assembly are housed within the thermal conditioning chamber.

An automatic data reduction program was written for the IQ-300 processing oscilloscope in



an effort to reduce the arbitrariness and operator-dependent preferen-ces involved with picking points

from stress-strain curves. For example, in this study, the yield stress is defined as the stress level

where the material most rapidly loses its ability to sustain load; the yield stress level is determined

by finding the minimum in the second-derivative of stress with respect to time. The second-deriva-

tive stress versus time data are somewhat noisy because of the particular finite-difference algoiithm

employed for calculating derivatives of oscilloscope trace data. However, the derivative data are

substantially improved by two successive data smoothings. Satisfactory results are obtained if the

first derivative of stress is finst smoothed with a twenty-point moving average and the second deriva-

tive oF stress is then smoothed with a twenty-five-point moving average. Automation of stress-strain

data ana!ysis through software programming permits determination of unbiased, operator-independ-

ent estimates of mechanical properties.

Equally arbitrary definitions of the yield stress (Malvern 1969), such as the proportional

limit definition (stress level at the end of the linear range) or offset method definition (stress level

after 0.2 percent offset strain), were not viable as yield stress definitions, since for the former defini-

tion a suitable linear range is difficult to determine for these materials, and for the latter definition

the yield would occur at fractions of a percent of maximum stress and the strain dependence of yield

could not be investigated. Other mechanical response parameters include, the yield strain, energy

density absorbed per unit undeformed volume, and compressive and "failure" moduli (see Figure 2

50.0

4 0 .0 y e dd O " = ' co p essive m d

30.0

' ýL =a "failure" modulus
S 20.0 d

10.0~ ~ J r de= umim

0-1
0 .05 0.10 0.15 0.20 0.25

strain (C)
yield mtain

Figure 2. Definitions of Mechanical Response Parameters.
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for a graphical illustration of the definition of these quantities).

After data reduction is completed, the mechanical property data and other pertinent test infor-

mation are transferred to a Compaq 286 personal computer via an RS-232 communications port.

The data are then imported into a DBASE III Plus database library for subsequent comparison and

correlation. A total of 31 mechanical property fields are stored and include propellant ID, lot num-

ber, date, compressive modul;, stress and strain at yield, energy absorbed at fixed strain levels from

0.025 to 0.25, specimen dimensions, test temperature, strain rate and a character array for physical

description of the deformed propellant.

3. UNDEFORMED STARTING MATERIAL: SEM MORPHOLOGY

The ML26A1IElI propellant is longitudinally cold-fractured after the specimen is thermally

conditioned in dry-ice for five minutes. The fracture surface is smooth with no observed cracks or

voids (Figure 3a). Subsequent SEM micrographs (Figures 3b through 3j) are sequentially magnified

for illustrative purposes. The specimen contains undissolved nitrocellulose fibers, not uncommon in

highly nitrated nitrocellulose. The diamneter of the nitrocellulose fibers range between 20-5 8 mi-

crometers. Also observed are very small particles with diameters less then 2 micrometers (possibly

carbon-black). Some nitrocellulose fibers appear to have been pulled out when the specimen was

prepared by cold-fracturing. The pull-out regions appear as depressions or "footprints" of undis-

solved nitrocellulose fibers (Figures 3g and 3h). A blister of roughly circular shape which contains

surface extensional cracks forms when the electron beam is focussed over the area of the "footprint"

(Figure 3j). The area immediately adjacent to the depression shows less reactivitý' to the electron

beam. The inhomogeneous reaction sensitivity of the propellant surface might beý,,xplained by, 1) a

higher concentration of energetic material (possibly nitroglycerin) in the depressio~ or 2) surface

roughness or topographic differences between the depression and adjacent areas. te high degree

of surface reactivity is unusual for double-base propellants and further research is needed to fully

understand the phenomenon.

5
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c) Enlarged section of Figure 3b) (100 g. 10 mm).

d) Enlarged section of Figure 3c) (10 g. 2 mmn).

Figure 3. SEM micrograph of longitudinally "cold-fracture-d" propellant mrin (cont'd)
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e) Enlarged section of Figure 3d-A) (10 g~ 5 mmx).

f)Enlarged section of Figure 3e) (10I±g 10 mm).

Figure 3. SEM micro~rah of longitudinally "cold-fractured" propellant train (cont'd)
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g) Enlarged section of Figure 3d-B) showing surface depre3sion (10 p. 5 mm).

h) Enlarged section of Figure 3g) (10 g. 10 mm).

Figure 3. SEM micrograph of longitudinally "cold-fractured' pmp~ellant grain (cont'd'
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i) Circular blister with surface cracks in depression. The electron
beam is focussed over the area in Figure 3j and is photographed
at the magnification (10 gL 10 mm) above.
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4. UNIAXIAL COMPRESSION TEST RESULTS

Photographs of damaged M26A1E1 specimens at each test temperature. -40, -20, 20 and 50

degrees Celsius, appear in Figures 4a) through 4d) respectively. All specimens are uniaxially de-

formed at a strain rate of 100 sec-1 to a strain level of about 40 percent. Specimens deformed at -40

degrees Celsius fracture through axial splitting and fragment into two or more pieces (Figure 4a).

Fracture is also observed in specimens deformed at -20 degrees Celsius, yet specimen fragmentation

does not occur (Figure 4b). Some axial splitting is also observed in specimens deformed at 20 and

50 degrees Celsius (Figures 4c and 4d).

Summary plots (5 tests per curve) which illustrate the experimental results for the uniaxial

compression of M26A1E1 and M14 at temperatures of-40, -20, 20 and 50 degrees Celsius and a

strain rate of 100 sec-1 appear in Figures 5 and 6 respectively. Both propellants exhibit "softening"

behavior as temperature increases. Thermal softening is common in materials with temperature-

dependent deformation mechanisms. The time axes in these figures are readily converted to strain

by multiplying by the strain rate, 100 sec-1. The mechanical behavior of M26A1E1 is very similar to

that of JA2 (Gazonas and Ford 1992), and exhibits continual workhardening behavior at all test tem-

peratures except at -40 degrees Celsius where the material slightly worksoftens after reaching a

maximum stress level (Figure 5). The macroscopic deformation response of M26A1E1 is ductile

since the material maintains signiricant stress levels to strain levels of 40 percent. In contrast to

M26A1E1, fragmentation, and a deterioration of the mechanical strength of M14 is observed at the

colder test temperatures, -20 and -40 degrees Celsius (Figure 6).

11
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SMETRIC IiII
a) 40-C b) -20-C

y/

c) 20 OC d) 500-C

Figure 4. Photographs of M26AIE1 Propellant Uniaxially Damaged at
Various Temperatures.
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Figure 5. Axial Stress versus Time for Various Temperatures in M26AE1 Propellant.
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Figure 6. Axial Stress versus Time for Various Temperatures in M14 Propellant.
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5. MECHANICAL RESPONSE PARAMETERS

Certain mechanical response parameters aid in quantifying the macroscopic deformation

behavior of M26A1E1 and M14 propellants. These parameters were illustrated earlier (Figure 2),

i.e., yield stress and strain, energy density absorbed per unit undeformed volume, and compressive

and "failure" moduli, and appear as a function of temperature for M26A1E1 and M14 propellants in

tabular form in Table 2.

Table 2. Comparitive Mechanical Properties of M26AIE1 and M14 Propellants
as a Function of Temperature, (a) M26A 1El (HES-9520.25),
(b) M14 (RAD-PD-066-1). Standard deviations are estimated from 5 tests.

Temp., Yield Yield Modulus, Failure Energy
Stress, Strain, Modulus, Density/Unit Vol.,

SMPa % G Pa G Pa M Pa

(a)

-40 140.2 ± 5 5.5±0.2 2.8±0.2 -0.09±0.01 31.5±k 0.9

-20 89.5± 3 4.4 ± 0.2 2.05 ± 0.05 0.019 ± 0.002 22.6 ± 0.4

20 28.1±1 2.7 0.3 0.8±0.1 0.057 0.005 8.7 ± 0.3

50 16.6±2 2.1+0.2' 0.51±0.04 0.054±0.003 5.6±0.2

(b)

-40 196.4±16 4.8±0.2 4.2±0.5 -0.5±0.2 19.1 ±4

-20 166.5 ± 7 4.4 ±0.5 3.7± 0.3 -0.36±0.02 19.4 ±2

20 118.3±7 4.4±0.4 2.9±0.3 -0.14±0.01 25.4±2

50 100.8±7 4.1±0.3 1.9±0.2 -0.031±0.006 22.4±2

14



The mechanical response parameters are also plotted in Figures 7 through 11. Polynomial

expressions are include4 in each figure for determination of mechanical responses at temperatures

other than those provided in T-ble 2. The yield stress decreases as temperature increases in both

M26A1E1 and M14 propellants, yet there is a divergence of the yield stress at higher temperatures

indicating that thermally activated deformation mechanisins are more important in M26A1El (Fig-

ure 7). The yield strain is also observed to decrease as temnerature increases in both propellants

(Figure 8). In M26A1E1, the yield strain is reduced by nearly a factor of three whereas in M14 the

yield strain is reduced by only a factor of 1.2 over the temperature range from -40 to 50 degrees

Celsius. Yield strain insensitivity to strain rate and temperature was also observed in previous

uniaxial deformation studies on M30 gun propellant (Gazonas and Ford 1992). The compressive

modulus of M26A1E1 is also seen to be more sensitive to temperature changes than the compressive

modulus of M14 (Figure 9). At 50 degrees Celsius, M14 is about 3.5 times "stiffer" than M26A1EL.

The opposite behavior is observed in the post-failure regime, where M14 propellant rapidly loses the

ability to sustain load at colder temperatures due to crack coalescence and fragmentation of the

specimen (Figure 10). Finally, the absorbed energy density per unit undeformed volume (obtained

by integrating the area under the stress-strain curve to a strain level of 0.25, see Figure 2) is also

relatively insensitive to temperature in M14 (Figure 11). In M26A1E1, the decrease in the absorbed

energy density with temperature is primarily due to the decrease in stress level sustainable in the

propellant as temperature is increased (Figure 5).

15
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Figure 7. Yield Stress versus Temperature,
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Figure 8. Yield Strain versus Temperature,
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Figure 9. Compressive Modulus versus Temperature.
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Figure 10. "Failure" Modulus versus Temperature.
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Figure 11. Absorbed Energy versus Temperature.

6. SUMMARY AND CONCLUSIONS

1) The uniaxial compressive response of M26A1E1 propellant is determined as a function of

temperature, -40, -20, 20 and 50 degrees Celsius and constant strain rate, 100 sec-1, and compared

with the mechanical response of M14 propellant.

2) Axial splitting is observed in all M26AIE1 specimens deformed to 40 percent strain, but

fragmentation into two or more pieces is only observed in those specimens tested at -40 degrees

Celsius.

18



3) Scanning electron microscopy of longitudinally cold-fractured specimens of M26AlE1

reveals the presence of undissolved nitrocellulose fibers on the order of 20 - 58 micrometers. De-

pressions in the propellant surface form as a result of "pull-out" of the nitrocellulose fibers during

the cold-fracture process. The depression areas are also highly reactive to the incident electron beam

and surface decomposition by blistering occurs as the energy density of the electron beanm is in-

creased. Regions outside the depression vhow less reactivity and indicate that the depression surface

might contain a higher concentration of energetic material (possibly nitroglycerin) than adjacent

areas. It is also possible that surface roughness or topographic differences between the depression

and adjacent areas cause the inhomogeneous surface reactivity. Further research is needed to study

the phenomenon.

4) A comparison of the mechanical response parameters, yield stress and strain, compres-

sive modulus, and absorbed energy density, between M26A1E1 and M14 propellants reveals that the

mechanical response of M26AlIElI propellant is more sensitive to temperature than M 14 propellant.

However, the "failure" modulus in M14 propellant is more sensitive to temperature since fracture

deformation mechanisms dominate in this material.

5) Since M26A I EI propellant is less susceptible to fracture damage than M 14 propellant

over the temperature range -40 to 50 degrees Celsius and at a strain rate of 100 sec-1, then M26AE1E

propellant will also be less likely to exhibit as significant an increase in apparent burning rate as

M14 propellant. In addition, previous work has shown that propellant vulnerability is correlated to

fracture damage (cold propellant is more vulnerable and mechanically friable than hot propellant).

19
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